Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virol J ; 19(1): 120, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1965846

ABSTRACT

Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.


Subject(s)
Enterovirus A, Human , Hand, Foot and Mouth Disease , MicroRNAs , Benzeneacetamides , Enterovirus A, Human/genetics , Epithelial Cells , Humans , MicroRNAs/genetics , Piperidones
2.
Mol Ther Nucleic Acids ; 27: 751-762, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1586912

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3'CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.

3.
Pathology ; 54(1): 104-110, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1500188

ABSTRACT

Identification of human miRNAs involved in coronavirus-host interplay is important due to the current COVID-19 pandemic. Therefore, this study aimed to measure the circulating plasma miR-155 expression level in COVID-19 patients and healthy controls to investigate its roles in the pathogenesis and severity of COVID-19 disease and to assess its usefulness as a clinical biomarker for the detection of COVID-19 disease and the severity of infection. A total of 150 COVID-19 patients and 50 controls were enrolled into our study. Beside the routine laboratory work and chest computed tomography (CT) scans of COVID-19 patients, plasma miR-155 expression level was measured using reverse transcription quantitative real-time PCR (RT-qPCR) technique. Our results demonstrated increased miR-155 expression level in COVID-19 patients compared to controls, in severe compared to moderate COVID-19 patients, and in non-survival compared to survival COVID-19 patients. miR-155 expression level also had significant correlation with clinicopathological characteristics of COVID-19 patients such as chest CT findings, CRP, ferritin, mortality, D-dimer, WBC count, and lymphocytes and neutrophils percentages. Also, our results showed that the area under the curve (AUC) for miR-155 was 0.986 with 90% sensitivity and 100% specificity when used as a biomarker for the detection of COVID-19 disease; while in detection of severity of COVID-19 disease, AUC for miR-155 was 0.75 with 76% sensitivity and specificity. From these results we can conclude that miR-155 has a crucial role in the pathogenesis and severity of COVID-19; also, it could be a good diagnostic clinical biomarker for the detection of COVID-19 disease and the severity of infection.


Subject(s)
Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , MicroRNAs/blood , Adult , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL